Abstract
Air pollution in urban environments exhibits large spatial and temporal variations due to high heterogeneous air flow and emissions. To address the complexity of local air pollutant dynamics, a comprehensive large-eddy simulation using the PALM model system v6.0 was conducted. The distribution of flow and vehicle emitted aerosol particles in a realistic urban environment in Malmö, Sweden, was studied and evaluated against on-site measurements made using portable instrumentation on a spring morning in 2021. The canyon transport mechanisms were investigated, and the convective and turbulent mass-transport rates compared to clarify their role in aerosol transport. The horizontal distribution of aerosols showed acceptable evaluation metrics for both mass and number. Flow and pollutant concentrations were more complex than those in idealized street canyon networks. Vertical turbulent mass-transport rate was found to dominate the mass transport process compared with the convective transport rate, contributing more than 70% of the pollutant transport process. Our findings highlight the necessity of examining various aerosol metric due their distinct dispersion behaviour. This study introduces a comprehensive high-resolution modelling framework that accounts for dynamic meteorological and aerosol background boundary conditions, real-time traffic emission, and detailed building features, offering a robust toll for local urban air quality assessment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.