Abstract

The effects of jet temperature on acoustic waves generated by a supersonic jet are investigated using large eddy simulation (LES) based on a high-fidelity computational code. The sixth-order compact scheme and the fourth-order Runge–Kutta scheme are employed for spatial derivatives and time integration, respectively. First, a verification and validation study is conducted using simulations of a cold supersonic jet with a jet Mach number of 2.0 and Reynolds number of $$9.0 \times 10^5$$, and the effects of grid resolution and disturbance strength are evaluated. The verification and validation study shows that $$6.5 \times 10^8$$ grid points are sufficient for qualitative discussion of acoustic wave generation phenomena and that the addition of disturbances is important for suppressing the acoustic waves caused by the turbulent transition at the nozzle exit, as seen in previous studies for a subsonic jet. Then, LESs of supersonic jets with a jet Mach number of 2.0 and Reynolds number of $$9.0 \times 10^5$$ are performed for three temperature cases where the ratios of chamber to atmospheric temperature are 1.0, 2.7, and 4.0. The present results illustrate that different jet temperatures do not change the shear layer thickness, but the shear layer develops more inside the jet as the jet temperature increases, resulting in a shorter potential core for the hot jet. With regard to the acoustic fields, as the jet temperature increases, stronger Mach waves are emitted from a wider source region at wider radiation angles. We observe multiple Mach waves with different angles in the hot jet cases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.