Abstract

The filtered density function (FDF) is implemented for a two-dimensional, large eddy simulation (LES) of a gas phase, spatially developing, reacting and non-reacting, constant-density, plane mixing layer in a flow regime prior to the mixing transition where the flow is mainly two-dimensional. The unresolved scalar fluctuations are taken into account by considering the probability density function (PDF) of subgrid scale (SGS) scalar quantities following the FDF approach. In the derived FDF transport equation, the effect of chemical reactions appears in a closed form. The Lagrangian Monte Carlo scheme is used to solve the FDF transport equation. The applicability and performance of the FDF for LES of a reacting plane mixing layer are assessed by comparisons with experimental measurements. In non-reacting flow, the calculated mean streamwise velocity profiles and mean mixture fraction profiles relax to self-similarity, which is in satisfactory agreement with the measurements. In reacting flow, the FDF calculation provided a satisfactory accuracy in comparison with measurements of mean reactant and product concentration. The increase in the total amount of product formation in the flip case demonstrates the asymmetric characteristics of the entrainment and mixing characteristics in the mixing layer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call