Abstract

We prove a sample path Large Deviation Principle (LDP) for a class of jump processes whose rates are not uniformly Lipschitz continuous in phase space. Building on it, we further establish the corresponding Wentzell–Freidlin (W-F) (infinite time horizon) asymptotic theory. These results apply to jump Markov processes that model the dynamics of chemical reaction networks under mass action kinetics, on a microscopic scale. We provide natural sufficient topological conditions for the applicability of our LDP and W-F results. This then justifies the computation of nonequilibrium potential and exponential transition time estimates between different attractors in the large volume limit, for systems that are beyond the reach of standard chemical reaction network theory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.