Abstract
This paper studies large deviations of a “fully coupled” finite state mean-field interacting particle system in a fast varying environment. The empirical measure of the particles evolves in the slow time scale and the random environment evolves in the fast time scale. Our main result is the path-space large deviation principle for the joint law of the empirical measure process of the particles and the occupation measure process of the fast environment. This extends previous results known for two time scale diffusions to two time scale mean-field models with jumps. Our proof is based on the method of stochastic exponentials. We characterise the rate function by studying a certain variational problem associated with an exponential martingale.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.