Abstract
We consider large deviations of empirical measures of diffusion processes. In a first part, we present conditions to obtain a large deviations principle (LDP) for a precise class of unbounded functions. This provides an analogue to the standard Cramér condition in the context of diffusion processes, which turns out to be related to a spectral gap condition for a Witten–Schrödinger operator. Secondly, we study more precisely the properties of the Donsker–Varadhan rate functional associated with the LDP. We revisit and generalize some standard duality results as well as a more original decomposition of the rate functional with respect to the symmetric and antisymmetric parts of the dynamics. Finally, we apply our results to overdamped and underdamped Langevin dynamics, showing the applicability of our framework for degenerate diffusions in unbounded configuration spaces.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.