Abstract

We investigate stochastic properties of the backward continued fraction expansion of irrational numbers in (0,1). For the mean process associated with a real-valued observable which depends only on the first digit of the expansion, we establish the large deviation principle. For any such observable which is non-negative, we completely determine the set of minimizers of the rate function in terms of a growth rate of the observable. Our method of proof employs the thermodynamic formalism for topological Markov shifts, and a multifractal analysis of pointwise Lyapunov exponents for the Rényi map generating the backward continued fraction expansion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.