Abstract
The large deviation principle for stochastic line integrals along Brownian paths on a compact Riemannian manifold is studied. We regard them as a random map on a Sobolev space of 1-forms. We show that the differentiability order of the Sobolev space can be chosen to be almost independent of the dimension of the underlying space by assigning higher integrability on 1-forms. The large deviation is formulated for the joint distribution of stochastic line integrals and the empirical distribution of a Brownian path. As the result, the rate function is given explicitly.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.