Abstract
We prove a precision of large deviation principle for current-valued processes such as shown in Bolthausen et al. (Ann Probab 23(1):236–267, 1995) for mean empirical measures. The class of processes we consider is determined by the martingale part of stochastic line integrals of 1-forms on a compact Riemannian manifold. For the pair of the current-valued process and mean empirical measures, we give an asymptotic evaluation of a nonlinear Laplace transform under a nondegeneracy assumption on the Hessian of the exponent at equilibrium states. As a direct consequence, our result implies the Laplace approximation for stochastic line integrals or periodic diffusions. In particular, we recover a result in Bolthausen et al. (Ann Probab 23(1):236–267, 1995) in our framework.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.