Abstract

Stamping operation is the most efficient way to form textile composites in industry. During a stamping process, the material undergoes large shear deformation, which may lead to two major failure mechanisms: out-of-plane wrinkling and in-plane slippage. The present paper mainly focuses on the large deformation mechanism and slippage of the plain woven composite during a bias extension. Bias extension experiments were carried out under different conditions. In addition to the data processing on the experimental curve, digital image correlation analysis was conducted on the test photographs, from which three typical deformation phases are identified. A theoretical model is then proposed to interpret the large deformation and slippage phenomenon from an energy point of view.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.