Abstract

We study the following question raised by Erdős and Hajnal in the early 90’s. Over all n n -vertex graphs G G what is the smallest possible value of m m for which any m m vertices of G G contain both a clique and an independent set of size log ⁡ n \log n ? We construct examples showing that m m is at most 2 2 ( log ⁡ log ⁡ n ) 1 / 2 + o ( 1 ) 2^{2^{(\log \log n)^{1/2+o(1)}}} obtaining a twofold sub-polynomial improvement over the upper bound of about n \sqrt {n} coming from the natural guess, the random graph. Our (probabilistic) construction gives rise to new examples of Ramsey graphs, which while having no very large homogenous subsets contain both cliques and independent sets of size log ⁡ n \log n in any small subset of vertices. This is very far from being true in random graphs. Our proofs are based on an interplay between taking lexicographic products and using randomness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.