Abstract
Local algorithms on graphs are algorithms that run in parallel on the nodes of a graph to compute some global structural feature of the graph. Such algorithms use only local information available at nodes to determine local aspects of the global structure, while also potentially using some randomness. Research over the years has shown that such algorithms can be surprisingly powerful in terms of computing structures like large independent sets in graphs locally. These algorithms have also been implicitly considered in the work on graph limits, where a conjecture due to Hatami, Lovasz and Szegedy [17] implied that local algorithms may be able to compute near-maximum independent sets in (sparse) random d-regular graphs. In this paper we refute this conjecture and show that every independent set produced by local algorithms is smaller that the largest one by a multiplicative factor of at least 1/2+1/(2√2) ≈ .853, asymptotically as d → ∞. Our result is based on an important clustering phenomena predicted first in the literature on spin glasses, and recently proved rigorously for a variety of constraint satisfaction problems on random graphs. Such properties suggest that the geometry of the solution space can be quite intricate. The specific clustering property, that we prove and apply in this paper shows that typically every two large independent sets in a random graph either have a significant intersection, or have a nearly empty intersection. As a result, large independent sets are clustered according to the proximity to each other. While the clustering property was postulated earlier as an obstruction for the success of local algorithms, such as for example, the Belief Propagation algorithm, our result is the first one where the clustering property is used to formally prove limits on local algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.