Abstract
There are various challenges associated with the fabrication of highly ordered magnetic nanostructures on flexible substrates due to the compatibility with lithography and deposition techniques. In this article, we present a nanofabrication technique to synthesize a large area (5 × 5 mm2) of ferromagnetic nanowires on top of a polymer substrate (Kapton®) using interference lithography and sputtering processes. We have systematically characterized their static and dynamic magnetic behaviors using magneto-optical Kerr magnetometry and broadband ferromagnetic resonance spectroscopy. To evaluate the quality of our approach, we also deposited an identical array of nanowires on Silicon substrates for comparison. The nanowires deposited on the two substrates display similar static and dynamic properties, including the identical magnetization reversal process, number of resonance modes, and comparable damping parameters. The results suggest the good quality of our nanowires and their suitability in future flexible spintronic devices.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have