Abstract
Intestinal ischemia and reperfusion injury (IRI) is a deadly and common condition. Death is associated with sepsis due to insufficient epithelial repair, requiring stem cell-driven regeneration, typically beginning 48 h after injury. Animal models are critical to advancing this field. To effectively study epithelial healing, models must survive clinically relevant intestinal ischemic injury extending to the crypt. Although mouse models are indispensable to intestinal research, their application for studying epithelial repair following severe IRI may be limited. Ischemic injury was induced in mouse and porcine jejunum for up to 3 h, with up to 72 h of reperfusion. Histologic damage was scored by Chiu-Park grade, and animal survival was assessed. Findings were compared between species. A mouse IRI literature review was performed to evaluate the purported degree of injury, duration of recovery, and reported survival rates. In mice and pigs, 3 h of ischemia induced severe, reliable injury extending into the crypt. However, at 48 h, mouse survival was only 23.5% compared with 100% survival in pigs. In literature, ischemia was induced for >1 h in only 4 of 102 mouse studies and none to 3 h. Recovery was attempted for 48 h in only six reports. Forty-seven studies reported intestinal crypt injury. Of those that featured histologic intestinal crypt damage, survival rates at 48 h ranged from 10 to 50% (median 30%). Mouse models are not ideal for studying intestinal stem cell-mediated recovery from severe IRI. Alternative large animal models, like pigs, are recommended.NEW & NOTEWORTHY Additional research is needed to improve recovery from severe intestinal ischemia. The selection of the ideal animal model is critical to facilitating this work. Based on our experimentation and literature review, porcine models, with increased translatability and an improved ability to survive both prolonged ischemia and the recovery period, appear to be the most appropriate choice for future studies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: American journal of physiology. Gastrointestinal and liver physiology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.