Abstract

Large amplitude electromagnetic solitons due to strong photon condensation, induced by a linearly polarized intense laser interacting with an underdense uniform collisionless plasma, are studied by particle simulations. In homogeneous plasma, both standing and accelerated solitons are observed. It is found that the acceleration of the solitons depends upon not only the laser amplitude but also the plasma length. The electromagnetic frequency of the solitons is between half and one time of the unperturbed electron plasma frequency. The electrostatic field inside the soliton has a one-cycle structure in space, while the transverse electric and the magnetic fields have half- and one-cycle structures, respectively. The acceleration of the solitons is briefly discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.