Abstract

Stimulated Raman scattering, stimulated Raman cascade and the transition from Raman cascade into photon condensation, induced by linearly-polarized intense laser beam interacting with underdense collisionless homogeneous plasmas, are studied by particle simulations. It is found that, at appropriate laser amplitude and plasma condition, a large-amplitude relativistic EM soliton is formed due to the strong photon condensation. The standing, backward- and forward-accelerated large-amplitude relativistic electromagnetic solitons induced by intense laser pulses in underdense collisionless homogeneous plasmas are studied by particle simulations. In addition to the inhomogeneity of the plasma density, we found that the acceleration of the solitons depends upon both the laser intensity and the plasma length. The electromagnetic frequency of the solitons is about one-half of the unperturbed electron plasma frequency. The transverse electric, magnetic and electrostatic fields have half-, one- and one-cycle structure in space, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call