Abstract
Nonlinear dynamic characteristics of functionally graded material (FGM) cylindrical shells surrounded by nonlinear elastic foundation under axial static and lateral dynamic loads in thermal environment are investigated in the current paper. The main emphasis is on the simulation of the elastic foundation model and thermal loads. Nonlinear tri-parametric elastic foundation including linear and nonlinear parameters is used to model the reaction of the elastic foundation on the cylindrical shell. Different thermal loading scenarios are applied to the system to study the effects of thermal environment, including uniform, linear and nonlinear temperature distribution across the shell thickness. Governing equations are derived based on the Donnell’s thin shell theory. Material properties of the FGM are assumed to be variable through the shell thickness according to a power law function. Discretization of the obtained governing equations is performed using the Galerkin’s method. An averaging method and the Runge–Kutta method are applied to obtain the frequency–amplitude relation and time–deflection relation, respectively. Comprehensive numerical results are given for investigating the effects of thermo-mechanical loads, material and geometrical properties and nonlinear elastic foundation parameters on nonlinear dynamic characteristics of the functionally graded cylindrical shells (FGCSs). Present formulations are validated by comparing the results with the published data for some specific cases.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have