Abstract
고해상도 기상자료 제공과 농림 분야에서의 요구를 충족시키기 위하여 LAPS를 이용하여 경기도 지역을 100m 해상도로 분석하였다. 구축된 시스템은 수치예보과에서 생산되는 6시간 간격 예측자료를 초기추정치로 사용하고, 각 관측자료를 동화하여 지표 온도와 습도 바람을 분석한다. 기존 분석시스템의 기상관측자료의 수집 방식을 개선하여 자료 수집에 소요되는 시간을 성공적으로 단축시킴으로써 약 20분 내에 기온, 상대습도, 풍향, 풍속에 대한 고해상도 분석결과 제공이 가능하게 되었다. 그러나 앞으로 LAPS 분석결과를 이용하여 관측이 가능한 지역 이외에 어느 지역에서든 정확한 농업기상정보를 산출할 수 있게 하려면 다양한 기상자료의 활용과 지표이용도의 개선, 관측지점의 영향반경을 최적화 시키는 과정들이 추가로 연구되어야 할 것이다. 현재 구축된 시스템의 분석결과 정확도는 떨어지지만 LAPS의 내부 알고리즘에 대한 미세한 조정으로 향상이 가능하므로 농업기상요소 생성을 위한 최적화 작업들을 수행한다면 정확도 향상을 꾀할 수 있을 것이다. 또한 다양한 기상요소에 대한 분석이 가능하기 때문에 특별한 기상요소들을 필요로 하는 농림 분야의 요구를 충족 시킬 수 있도록 분석요소의 확장이 가능 할 것이다. Demand for high resolution weather data grows in the agriculture and forestry fields. Local Analysis and Prediction System (LAPS) can be used to analyze the local weather at high spatial and temporal resolution, utilizing the data from various sources including numerical weather prediction models, wind or temperature profilers, Automated Weather Station (AWS) networks, radars, and satellites. LAPS has been set to analyze weather elements such as air temperature, relative humidity, wind speed, and wind direction every hour at the spatial resolution of <TEX>$100m{\times}100m$</TEX> for Gyeonggi-do on near real-time basis. The AWS data were revised by adding the agricultural field AWS data (33 stations) in addition to the KMA data. The analysis periods were from 1 to 31 August 2009 and from 15 to 21 February 2010. The comparison of the LAPS output showed the smaller errors when using the agricultural AWS observation data together with the KMA data as its input data than using only either the agricultural or KMA AWS data. The accuracy of the current system needs improvement by further optimization of analyzing options of the system. However, the system is highly applicable to various fields in agriculture and forestry because it can provide site specific data with reasonable time intervals.
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have