Abstract

Seismic exploration provides information about the ground substructures. Seismic images are generally corrupted by several noise sources. Hence, efficient denoising procedures are required to improve the detection of essential geological information. Wavelet bases provide sparse representation for a wide class of signals and images. This property makes them good candidates for efficient filtering tools, allowing the separation of signal and noise coefficients. Recent works have improved their performance by modelling the intra- and inter-scale coefficient dependencies using hidden Markov models, since image features tend to cluster and persist in the wavelet domain. This work focuses on the use of lapped transforms associated with hidden Markov modelling. Lapped transforms are traditionally viewed as block-transforms, composed of M pass-band filters. Seismic data present oscillatory patterns and lapped transforms oscillatory bases have demonstrated good performances for seismic data compression. A dyadic like representation of lapped transform coefficient is possible, allowing a wavelet-like modelling of coefficients dependencies. We show that the proposed filtering algorithm often outperforms the wavelet performance both objectively (in terms of SNR) and subjectively: lapped transform better preserve the oscillatory features present in seismic data at low to moderate noise levels.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.