Abstract

In this paper we determine the homology (with trivial coefficients) of the free two-step nilpotent Lie algebras over the complex numbers. This is done by working out the structure of the homology as a module under the general linear group. The main tool is a Laplacian for the free two-step nilpotent Lie algebras, which turns out to be closely related to the Casimir operator of the general linear group. We are able to compute all eigenvalues of the Laplacian on the chain complex.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.