Abstract

We propose a (new) definition of a fractional Laplace’s transform, or Laplace’s transform of fractional order, which applies to functions which are fractional differentiable but are not differentiable, in such a manner that they cannot be analyzed by using the Djrbashian fractional derivative. After a short survey on fractional analysis based on the modified Riemann–Liouville derivative, we define the fractional Laplace’s transform. Evidence for the main properties of this fractal transformation is given, and we obtain a fractional Laplace inversion theorem.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.