Abstract

In biological, glassy, and active systems, various tracers exhibit Laplace-like, i.e., exponential, spreading of the diffusing packet of particles. The limitations of the central limit theorem in fully capturing the behaviors of such diffusive processes, especially in the tails, have been studied using the continuous time random walk model. For cases when the jump length distribution is super-exponential, e.g., a Gaussian, we use large deviations theory and relate it to the appearance of exponential tails. When the jump length distribution is sub-exponential, the packet of spreading particles is described by the big jump principle. We demonstrate the applicability of our approach for finite time, indicating that rare events and the asymptotics of the large deviations rate function can be sampled for large length scales within a reasonably short measurement time.Graphical abstractThe universality of Laplace tails appears everywhere

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.