Abstract

A thermodynamic and experimental investigation of a new class of solar thermochemical redox intermediates, namely, lanthanum–strontium–manganese perovskites, is presented. A defect model based on low-temperature oxygen non-stoichiometry data is formulated and extrapolated to higher temperatures more relevant to thermochemical redox cycles. Strontium contents of x = 0.3 (LSM30) and x = 0.4 (LSM40) in La1–xSrxMnO3−δ result in favorable reduction extents compared to ceria in the temperature range of 1523–1923 K. Oxidation with CO2 and H2O is not as thermodynamically favorable and largely dependent upon the oxidant concentration. The model is experimentally validated by O2 non-stoichiometry measurements at high temperatures (>1623 K) and CO2 reduction cycles with commercially available LSM35. Theoretical solar–fuel energy conversion efficiencies for LSM40 and ceria redox cycles are 16 and 22% at 1800 K and 13 and 7% at 1600 K, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call