Abstract
Lanthanum (La) appears to impair learning and memory and increase the toxicity of excitatory amino acids in the central nervous system. The mechanism underlying excitotoxicity induced by La is still unclear. The purpose of this study was to investigate the hippocampal impairment of La exposure and possible mechanism involving the glutamate-nitric oxide (NO)-3'-5'-cyclic guanosine monophosphate (cGMP) pathway. In this study, lactating rats were exposed to 0, 0.25, 0.50, and 1.0% lanthanum chloride (LaCl3) in drinking water, respectively. Their offsprings were exposed to LaCl3 by parental lactation and then administrated with 0, 0.25, 0.50, and 1.0% LaCl3 in drinking water for 1 month. The results showed that La exposure impaired the neuronal ultrastructure and significantly increased the glutamate level, intracellular calcium ion concentrations, and NR1 and NR2B expression in the hippocampi. La exposure significantly enhanced messenger RNA expression and activity levels of inducible NO synthase and increased NO and cGMP levels in the hippocampi in a dose-dependent manner. These results indicate that the mechanism underlying excitotoxicity induced by La is possibly due to alterations of the glutamate-NO-cGMP signaling pathway in the hippocampus. The study provides new findings that may help prevent and improve treatments for La-induced neurotoxicity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.