Abstract

To test our hypothesis that the abnormally small efficacy of mu-opioid agonists in diabetic rats may be due to functional changes in the L-arginine/nitric oxide (NO)/cyclic guanosine monophosphate (cGMP) pathway, we evaluated the effects of N-iminoethyl-L-ornithine, methylene blue, and 3-morpholino-sydnonimine on [D-Ala(2), NMePhe(4), Gly-ol(5)]enkephalin (DAMGO)-induced antinociception in both streptozotocin (STZ)-diabetic and nondiabetic rats. Animals were rendered diabetic by an injection of STZ (60 mg/kg intraperitoneally). Antinociception was evaluated by the formalin test. The mu-opioid receptor agonist DAMGO (1 microg per paw) suppressed the agitation response in the second phase. The antinociceptive effect of DAMGO in STZ-diabetic rats was significantly less than in nondiabetic rats. N-Iminoethyl-L-ornithine (100 microg per paw), an NO synthase inhibitor, or methylene blue (500 microg per paw), a guanylyl cyclase inhibitor, significantly decreased DAMGO-induced antinociception in both diabetic and nondiabetic rats. Furthermore, 3-morpholino-sydnonimine (200 microg per paw), an NO donor, enhanced the antinociceptive effect of DAMGO in nondiabetic rats but did not change in diabetic rats. These results suggest that the peripheral antinociceptive effect of DAMGO may result from activation of the L-arginine/NO/cGMP pathway and dysfunction of this pathway; also, events that are followed by cGMP activation may have contributed to the demonstrated poor antinociceptive response of diabetic rats to mu-opioid agonists. This is the first study on the role of the nitric oxide (NO)/cyclic guanosine monophosphate pathway on [D-Ala(2), NMePhe(4), Gly-ol(5)]enkephalin (DAMGO)-induced peripheral antinociception and the effect of diabetes on this pathway. The study suggests a possible role of DAMGO as a peripherally-acting analgesic drug.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.