Abstract

GaOOH nanorods were prepared by hydrolysis of Ga(NO(3))(3)·xH(2)O by urea at ~100 °C in the presence of different amounts of lanthanide ions like Eu(3+), Tb(3+), and Dy(3+). On the basis of X-ray diffraction and vibrational studies, it is confirmed that layered structure of GaOOH collapses even when very small amounts of lanthanide ions (1 atom % and more) are present in the reaction medium during the synthesis of GaOOH nanorods. The incorporation of lanthanide ions at the interlayer spacing of the GaOOH lattice, followed by its reaction with OH groups that connect the layers containing edge-shared GaO(6) in GaOOH, is the reason for the collapse of the layered structure and associated amorphization. This leads to the formation of finely mixed hydroxides of lanthanide and gallium ions. These results are further confirmed by steady-state luminescence and excited-state lifetime measurements carried out on the samples. The morphology of the nanorods is maintained upon heat treatment at high temperatures like 500 and 900 °C, and during this process, the finely mixed lanthanide and gallium hydroxides facilitate diffusion of lanthanide ions into the Ga(2)O(3) lattice, as revealed by the existence of strong energy transfer with an efficiency of more than 90% between the host and lanthanide ions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.