Abstract

Practical lithium metal batteries require full and reversible utilization of thin metallic Li anodes. This introduces a fundamental challenge concerning how to create solid-electrolyte interphases (SEIs) that are able to regulate interfacial transport and protect the reactive metal, without adding appreciably to the cell mass. Here, we report on physicochemical characteristics of Langmuir–Blodgett artificial SEIs (LBASEIs) created using phosphate-functionalized reduced graphene oxides. We find that LBASEIs not only meet the challenges of stabilizing the Li anode, but can be facilely assembled in a simple, scalable process. The LBASEI derives its effectiveness primarily from its ability to form a durable coating on Li that regulates electromigration at the anode/electrolyte interface. In a first step towards practical cells in which the anode and cathode capacities are matched, we report that it is possible to achieve stable operations in both coin and pouch cells composed of a thin Li anode with the LBASEI and a high-loading intercalation cathode.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.