Abstract

<abstract> This paper studies Langevin equation with nonlocal boundary conditions involving a $ \psi $-Caputo fractional operators of different orders. By the aid of fixed point techniques of Krasnoselskii and Banach, we derive new results on existence and uniqueness of the problem at hand. Further, a new $ \psi $-fractional Gronwall inequality and $ \psi $-fractional integration by parts are employed to prove Ulam-Hyers and Ulam-Hyers-Rassias stability for the solutions. Examples are provided to demonstrate the advantage of our major results. The proposed results here are more general than the existing results in the literature which can be obtained as particular cases. </abstract>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.