Abstract
In this paper we study the critical behavior of a simple one-dimensional rotor spin in the form of a linear chain with long-range interactions, using the mean field Langevin dynamics approach and in the presence of fluctuations added by a heat bath. We have computed the specific heat, the magnetic susceptibility, the Binder fourth-order cumulant, and the magnetization, and then we have calculated the critical exponents using finite-size scaling. In addition, we provide a relation between the thermal bath temperature and the temperature of the system. Our results confirm the existence of a second-order critical temperature in the one-dimensional chain of spins with long-range interaction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.