Abstract

The Highway Capacity Manual (HCM) methodology for freeway systems yields average speed values for each segment and does not consider lane-by-lane flow and operational conditions. However, flows are not equally distributed between lanes. In congested conditions and particularly when spillback occurs, flows and traffic conditions vary widely. For example, the rightmost lane may be blocked while the leftmost lane is free-flowing. The purpose of this research is to develop a model for estimating lane-by-lane speeds and flows under various freeway designs and demands. Speed and flow data from loop detectors at several locations around the USA were collected, totaling 531,000 observations aggregated in 15-min intervals. The results show that lane flow distribution is highly dependent on the segment total flow, with different patterns for 4-, 6-, and 8-lane segments. The percentage of heavy vehicles, presence of nearby ramps, day of week, and time of day also affect the distribution of flow among freeway lanes. Theoretical lane-by-lane speed-flow curves were developed and the results were compared with field data. Results showed that lane-by-lane speeds can be estimated accurately, as long as inputs for capacity and free-flow speeds can be provided for each lane in the segment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.