Abstract
Operationally AVHRR and TM/TM+ data were used and a supervised maximum likelihood classification (MLH) was applied to depict land use changes in Beijing, providing basic maps for planning and development. With rapid growth of the city these are helpful to deal with higher resolution data, whereas new classification algorithms produce land use maps more accurate. In the paper, new sensor ASTER data and the Kohonen self-organized neural network feature map (KSOM) were tested.The TSOM classified 7% more accurately than the maximum likelihood algorithm in general, and 50% more accurately for the classes ‘residential area’ and ‘roads’. The results suggest that ASTER data and the Kohonen self-organized neural network classification can be used as an alternative data and method in a land use update operational system.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have