Abstract

In the context of global climate governance, the study of land-use carbon emissions in the Yellow River Basin is crucial to China's "dual-carbon" goal in addition to ecological conservation and the high-quality developments. This paper computed the land-use carbon emissions of 95 cities in the Yellow River Basin from 2000 to 2020 and examined its characteristics with respect to spatio-temporal evolution and driving mechanisms. The findings are as follows: (1) The overall net land-use carbon emissions in the Yellow River Basin rose sharply from 2000 to 2020. (2) From a spatial perspective, the Yellow River Basin's land-use carbon emissions are high in the middle-east and low in the northwest, which is directly tied to the urban development model and function orientation. (3) A strong spatial link exists in the land-use carbon emissions in the Yellow River Basin. The degree of spatial agglomeration among the comparable cities first rose and then fell. "Low-Low" was largely constant and concentrated in the upper reaches, whereas "High-High" was concentrated in the middle and lower reaches with an east-ward migratory trend. (4) The rates of economic development and technological advancement have a major positive driving effect. Moreover, the other components' driving effects fluctuate with time, and significant geographical variance exists. Thus, this study not only provides a rationale for reducing carbon emissions in the Yellow River Basin but also serves as a guide for other Chinese cities with comparable climates in improving their climate governance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call