Abstract

Over the preceding decades, climate change has affected precipitation, the most common factor triggering landslides. The aim of this study is to highlight this impact by examining the precipitation trends in the Chania regional unit, Greece, with the help of the precipitation time series provided by 21 local meteorological stations covering a period from 1955 to 2020. The analysis also focuses on the extreme precipitation events of February 2019, where the monthly cumulated precipitation amount reached 1225 mm, one of the highest ever recorded in Greece. Moreover, an inventory of past and recent landslides was created and the intensity–duration landslide precipitation thresholds were evaluated. Daily simulations of precipitation from three state-of-the-art regional climate models were used to analyze precipitation patterns under two representative concentration pathways (RCPs), 4.5 and 8.5, for the period 2030–2060. The application of the estimated precipitation thresholds on the daily future precipitation projections revealed an increase in the following decades of the precipitation events that can activate a landslide and, therefore, highlighted the climate change impact. Moreover, the mean annual precipitation of the preceding 10 years was evaluated and used along with local hydro-geological data and the recent landslide inventory, providing approximately a 5% more effective landslide susceptibility map compared with the relative maps produced by using the mean annual precipitation evaluated for the control period (1976–2005) and for the preceding 30 years. Thus, landslide susceptibility emerges as a dynamic process and the landslide susceptibility map needs to be regularly updated due to the significant and ongoing changes in precipitation because of climate change.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call