Abstract

Traditional landslide hazard assessment methods generally use the same evaluation model to carry out assessments under different working conditions. Due to the differences in landslide influence factors and model calculation methods considered under different working conditions, the evaluation results obtained using traditional methods are different from those of real-world scenarios. Therefore, research on optimal landslide hazard assessment methods for different working conditions is important for disaster prevention and mitigation in areas along fault zones. Taking the section along the Lixian–Luojiabu fault zone in Gansu province in China as the research area, a landslide hazard assessment was carried out under rainfall and earthquake conditions. A method based on the fractal theory–information coupling model is proposed for the rainfall condition, and a method based on an improved Newmark model considering matric suction is proposed for the earthquake condition. Under the rainfall condition, a landslide hazard assessment was carried out using the information model, the logistic regression model, the fractal theory model, the logistic regression–information coupling model and the fractal theory–information coupling model. Meanwhile, under the earthquake condition, an assessment was carried out using the traditional Newmark model and the improved Newmark model considering matric suction. Finally, the ROC curve and Kappa coefficient were used to test the accuracy of these evaluation models and to determine the optimal model under different working conditions. The results showed that the fractal theory–information coupling model had the largest AUC value and Kappa coefficient value under the rainfall condition (0.856 and 0.807, respectively). The test value of the logistic regression–information coupling model was second, and the values of the other three models were all lower than 0.8. This shows that the evaluation of the fractal theory–information coupling model is better than those of the other models under the rainfall condition. The AUC value and Kappa coefficient of the improved Newmark model under the earthquake condition were 0.805 and 0.794, respectively, which were larger than the test values of the traditional Newmark model. This shows that the evaluation of the proposed model is better than that of the traditional Newmark model under the earthquake condition. These research results provide a reference for landslide hazard assessments in areas with similar characteristics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call