Abstract

The concept of landscape evolution space (LES) is introduced as a tool for assessing landscapes and geomorphic systems, intended to be a systematic means for assessing the various factors that contribute to the potential for change in geomorphic systems. The LES conceptual model is based on the energy and mass available to drive and accommodate landscape evolution. An n-dimensional landscape evolution space is defined not only by spatial coordinates, but also by the availability of mass and energy. The LES is thus a space or hypervolume representing the resources available for geomorphic evolution and landscape change. An expression for LES is derived based on elevation, material density, surface area, and inputs of solar, meteoric, and biological energy and mass. Though primarily an heuristic device, the LES model can be used to address concrete problems. Two examples are given. In one, increased surface area due to topographic roughening and dissection of an incised plateau is found to only slightly offset erosional removals of mass in terms of the magnitude of the LES. In the other, sensitivity of coastal plain rivers to several impacts of sea level and climate change is explored. The LES model also leads to the concept of a geomorphological niche, representing the resources available to drive or support a specific process or suite of processes. Considerations of landscape evolution have traditionally focused on the interplay of endogenic vs. exogenic processes, uplift vs. denudation, or soil formation vs. erosion. The LES model explicitly broadens the conceptual framework of landscape evolution beyond the traditional dialectics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call