Abstract

Self-organization is common in earth surface systems, and related principles have been proposed as general principles applicable to geomorphic systems. Non-self-organizing behaviour is also observed in geomorphic systems, however. If a reasonable box-and-arrow diagram and associated qualitative interaction matrix can be devised for a geomorphic system, one can determine whether or not (or under what conditions) the system is self-organizing. Both self- organizing (at-a-station hydraulic geometry) and non-self-organizing (soil landscape evolution) geomorphic systems are illustrated. The development of topographic relief demonstrates the principle that landscape evolution may be characterized by both modes at different times or under different circumstances. Increasing relief, involving a mean divergence of elevations, may be self- organizing. Topographic development by decreasing relief, where elevations generally converge, is always non-self-organizing. Self-organization in geomorphology may be similar to steady-state equilibrium, in that its explanatory value lies not in general applicability, but in distinguishing between fundamentally different modes of landscape development.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.