Abstract

Subsurface hydrocarbon reservoirs act as effective thermal barriers to the Earth’s heat flow from the interior to the surface. As a result, a positive thermal anomaly below a hydrocarbon reservoir and a negative thermal anomaly on the surface above the reservoir are observed. The use of remote sensing satellite images is a rapid, cost-effective and accurate method of determining land surface temperature of a region. The present study uses recent Landsat 8 operational land imager-thermal infrared sensor images to detect land surface temperature distribution in a part of the Assam–Arakan Fold Belt, North East India, using a single-channel algorithm. Two anomalous negative surface temperature zones to the south of the study area are found to be important. High-resolution Landsat 8 panchromatic image, surface geological map, NDVI map and SRTM data rule out the effects of artefacts, urban settlements, and variations in lithology, vegetation or topography on these anomalous zones. The superimposition of the surface temperature map over the previously determined hydrocarbon prospect map reveals that these negative surface temperature anomalies lie over two significant hydrocarbon prospect zones. Thus, the effect of subsurface petroleum reservoirs is evident on the land surface temperature distribution of the area. Therefore, satellite image-based land surface temperature mapping can be used as an aid in detecting potential target areas for hydrocarbon exploration in the entire basin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.