Abstract

Parallel data processing complicates the completion of string similarity joins because parallel data processing requires the use of a well designed data partitioning scheme. Moreover, efficient verification of string pairs is needed to speed up the entire string similarity join process. We propose a novel framework that addresses these requirements through the use of edit distance constraints. The Landmark-Join framework has two functions that reduce two kinds of search spaces. The first, q-bucket partitioning, reduces the number of verifications of dissimilar string pairs and lowers skewness among buckets. The second, local upper bound calculation, prunes the search space of edit distance to speed up each verification. Experimental results show that Landmark-Join has good parallel scalability and that the two proposed functions speed up the entire string similarity join process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.