Abstract

Sparse subspace clustering (SSC) has achieved the state-of-the-art performance in the clustering of hyperspectral images (HSIs). However, the high computational complexity and sensitivity to noise limit its clustering performance. In this paper, we propose a scalable SSC method for the large-scale HSIs, which significantly accelerates the clustering speed of SSC without sacrificing clustering accuracy. A small landmark dictionary is first generated by applying k-means to the original data, which results in the significant reduction of the number of optimization variables in terms of sparse matrix. In addition, we incorporate spatial reg-ularization based on total variation (TV) and improve this way strongly robustness to noise. A landmark-based spectral clustering method is applied to the obtained sparse matrix, which further improves the clustering speed. Experimental results on two real HSIs demonstrate the effectiveness of the proposed method and the superior performance compared to both traditional SSC-based methods and the related large-scale clustering methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.