Abstract
Sparse subspace clustering (SSC) has achieved the state-of-the-art performance in the clustering of hyperspectral images (HSIs). However, the high computational complexity and sensitivity to noise limit its clustering performance. In this paper, we propose a scalable SSC method for the large-scale HSIs, which significantly accelerates the clustering speed of SSC without sacrificing clustering accuracy. A small landmark dictionary is first generated by applying k-means to the original data, which results in the significant reduction of the number of optimization variables in terms of sparse matrix. In addition, we incorporate spatial reg-ularization based on total variation (TV) and improve this way strongly robustness to noise. A landmark-based spectral clustering method is applied to the obtained sparse matrix, which further improves the clustering speed. Experimental results on two real HSIs demonstrate the effectiveness of the proposed method and the superior performance compared to both traditional SSC-based methods and the related large-scale clustering methods.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have