Abstract
We analyze the dynamics of a two-level quantum system (TLS) under the influence of a strong sinusoidal driving signal whose origin is the interaction of the two-level system with a quantum field. In this approach the driving field is replaced by a harmonic oscillator that is either strongly coupled to the TLS or populated with a large number of photons. Starting from the Rabi model, we derive expressions for the TLS’s oscillation frequencies and compare the results with those obtained from the model where the driving signal is treated classically. We show that in the limits of weak coupling and large photon number, the well-known expression for the Rabi frequency in the strong driving regime is recovered. In the opposite limit of strong coupling and small photon number, we find differences between the predictions of the semiclassical and quantum models. The results of the quantum picture can therefore be understood as Landau–Zener–Stueckelberg interferometry in the fully quantum regime.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have