Abstract

The application of last-generation spatial data modelling, integrating Earth Observation, population, economic and other spatially explicit data, enables insights into the sustainability of the global urbanisation processes with unprecedented detail, consistency, and international comparability. In this study, the land use efficiency indicator, as developed in the Sustainable Development Goals, is assessed globally for the first time at the level of Functional Urban Areas (FUAs). Each FUA includes the city and its commuting zone as inferred from statistical modelling of available spatial data. FUAs represent the economic area of influence of each urban centre. Hence, the analysis of land consumption within their boundary has significance in the fields of spatial planning and policy analyses as well as many other research areas. We utilize the boundaries of more than 9,000 FUAs to estimate the land use efficiency between 1990 and 2015, by using population and built-up area data extracted from the Global Human Settlement Layer. This analysis shows how, in the observed period, FUAs in low-income countries of the Global South evolved with rates of population growth surpassing the ones of land consumption. However, in almost all regions of the globe, more than half of the FUAs improved their land use efficiency in recent years (2000–2015) with respect to the previous decade (1990–2000). Our study concludes that the spatial expansion of urban areas within FUA boundaries is reducing compactness of settlements, and that settlements located within FUAs do not display higher land use efficiency than those outside FUAs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call