Abstract

BackgroundAlthough the system for producing yellow corn grain is well established in the US, its role among other biofeedstock alternatives to petroleum-based energy sources has to be balanced with its predominant purpose for food and feed as well as economics, land use, and environmental stewardship. We model land usage attributed to corn ethanol production in the US to evaluate the effects of anticipated technological change in corn grain production, ethanol processing, and livestock feeding through a multi-disciplinary approach. Seven scenarios are evaluated: four considering the impact of technological advances on corn grain production, two focused on improved efficiencies in ethanol processing, and one reflecting greater use of ethanol co-products (that is, distillers dried grains with solubles) in diets for dairy cattle, pigs, and poultry. For each scenario, land area attributed to corn ethanol production is estimated for three time horizons: 2011 (current), the time period at which the 15 billion gallon cap for corn ethanol as per the Renewable Fuel Standard is achieved, and 2026 (15 years out).ResultsAlthough 40.5% of corn grain was channeled to ethanol processing in 2011, only 25% of US corn acreage was attributable to ethanol when accounting for feed co-product utilization. By 2026, land area attributed to corn ethanol production is reduced to 11% to 19% depending on the corn grain yield level associated with the four corn production scenarios, considering oil replacement associated with the soybean meal substituted in livestock diets with distillers dried grains with solubles. Efficiencies in ethanol processing, although producing more ethanol per bushel of processed corn, result in less co-products and therefore less offset of corn acreage. Shifting the use of distillers dried grains with solubles in feed to dairy cattle, pigs, and poultry substantially reduces land area attributed to corn ethanol production. However, because distillers dried grains with solubles substitutes at a higher rate for soybean meal, oil replacement requirements intensify and positively feedback to elevate estimates of land usage.ConclusionsAccounting for anticipated technological changes in the corn ethanol system is important for understanding the associated land base ascribed, and may aid in calibrating parameters for land use models in biofuel life-cycle analyses.

Highlights

  • The system for producing yellow corn grain is well established in the US, its role among other biofeedstock alternatives to petroleum-based energy sources has to be balanced with its predominant purpose for food and feed as well as economics, land use, and environmental stewardship

  • We examined three key ‘supply’ variables to quantify the long-term effects and interactions involving corn grain yield, ethanol processing, and livestock feeding to illustrate how these factors affect land area attributed to corn ethanol production

  • Replacing corn and soybean meal in livestock diets with dried grains with solubles (DDGS), corn gluten feed (CGF), and corn gluten meal (CGM) has the effect of reducing the land area attributed to corn ethanol production; the land area attributed to corn ethanol production is less than the acreage associated with production of the 40.5% of the corn grain directed to ethanol processing (Table 1)

Read more

Summary

Introduction

The system for producing yellow corn grain is well established in the US, its role among other biofeedstock alternatives to petroleum-based energy sources has to be balanced with its predominant purpose for food and feed as well as economics, land use, and environmental stewardship. The corn ethanol system produces significant quantities of coproducts, including distillers dried grains with solubles (DDGS), corn gluten feed (CGF), and corn gluten meal (CGM). These co-products substitute for corn grain and soybean meal in livestock feed, mitigating to some extent the trade-off between fuel and feed with corn grain channeled to ethanol production

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.