Abstract
High-altitude areas are thought to be more sensitive to climate change, but long-term series of land surface temperature (LST) observations are still inadequate in low-latitude high-altitude mountainous areas. We investigated spatiotemporal variations in the LST and its dominant driving factors at different time scales based on the long-term series (2001 - 2020) of MODIS data over the Yunnan Province (YNP) in southwest China, with a special focus on elevation-dependent warming (EDW). The results indicated that annual LST generally increased at a rate of 0.18°C decade-1 over the past 20years, and the increase was stronger in summer (0.47°C decade-1). Moreover, the nighttime warming rate (0.43°C decade-1) was much faster than that during the daytime (- 0.08°C decade-1), indicating that there was an asymmetric diurnal warming. We also confirmed the presence of EDW, which behaves more greatly above 3500m. Spatially, the warming trend in high-cold mountains, hot-dry river valleys and the tropics was obvious, while the trend in the northeastern YNP and western side of the Ailao Mountains was opposite. On the timescales of annual, autumn and winter, more than 60% of the LST in the study area was mainly affected by temperature, and 20% ~ 30% was affected by precipitation. LST and warming trend largely differenced with respect to land cover types, with the highest values occurring in built-up lands. This research is expected to contribute to a better understanding of climate change processes in the YNP.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.