Abstract

High-speed railways in the Beijing–Tianjin–Hebei (BTH) Plain are gradually becoming more widespread, covering a greater area. The operational safety of high-speed railways is influenced by the continuous development of land subsidence. It is necessary to predict the subsidence along the high-speed railways; thus, this work is of critical importance to the safety of high-speed railway operation. In this study, we processed Sentinel-1A data using the Persistent Scatterer Interferometric Synthetic Aperture Radar (PS-InSAR) technique to acquire the land subsidence in the typical BTH area. Then, we combined the Empirical Mode Decomposition (EMD) and Gradient Boosting Decision Tree (GBDT) methods (EMD-GBDT) to forecast land subsidence along high-speed railways. The results revealed that some parts of the high-speed railways in the BTH plain had passed through or approached the land subsidence area; the maximum cumulative subsidence of the Beijing–Shanghai, Tianjin–Baoding and Shijiazhuang–Jinan high-speed railways reached 326 mm, 384 mm and 350 mm, respectively. The forecasting accuracy for land subsidence along high-speed railways was enhanced by the EMD-GBDT model. The Root Mean Square Error (RMSE) and Mean Absolute Error (MAE) were 0.38 mm to 0.56 mm and 0.23 mm to 0.38 mm, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call