Abstract
Global sea level rise is a major environmental concern for many countries and cities, particularly for low-lying coastal areas where urban development is threatened by the combined effects of sea level rise and land subsidence. This study employed an improved two-layer network Persistent Scatterers Interferometric Synthetic Aperture Radar (PS-InSAR) technology to obtain high-precision land subsidence in Singapore from 2015 to 2019. Landsat images from 1973 to 2020 were also utilized to extract changes in Singapore’s coastline. Geological, topographical, and global sea level rise data were integrated to investigate the causes and impacts of land subsidence in Singapore. The results indicate that the areas with severe subsidence coincide with land reclamation areas, where subsidence is mainly due to soil consolidation. Based on WorldDEM, land subsidence, and sea level rise data, the maximum inundation depth in Singapore by 2050 is estimated to be 1.24 m, with the Marina Bay area in Singapore’s central business district being the most vulnerable to sea level rise. This study provides data support and a scientific basis for understanding the impact of land subsidence on Singapore’s coastal areas under the influence of multiple factors using advanced InSAR technology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.