Abstract

This paper explores a statistical mechanics approach as a means to better understand specific land cover changes on a continental scale. Integrated assessment models are used to calculate the impact of anthropogenic emissions via the coupling of technoeconomic and earth/atmospheric system models and they have often overlooked or oversimplified the evolution of land cover change. Different time scales and the uncertainties inherent in long term projections of land cover make their coupling to integrated assessment models difficult. The mainstream approach to land cover modelling is rule-based methodology and this necessarily implies that decision mechanisms are often removed from the physical geospatial realities, therefore a number of questions remain: How much of the predictive power of land cover change can be linked to the physical situation as opposed to social and policy realities? Can land cover change be understood using a statistical approach that includes only economic drivers and the availability of resources? In this paper, we use an energy transition paradigm as a means to predict this change. A cost function is applied to developed land covers for urban and agricultural areas. The counting of area is addressed using specific examples of a Pólya process involving Maxwell–Boltzmann and Bose–Einstein statistics. We apply an iterative counting method and compare the simulated statistics with fractional land cover data with a multi-national database. An energy level paradigm is used as a basis in a flow model for land cover change. The model is compared with tabulated land cover change in Europe for the period 1990–2000. The model post-predicts changes for each nation. When strong extraneous factors are absent, the model shows promise in reproducing data and can provide a means to test hypothesis for the standard rules-based algorithms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.