Abstract
Introduction Although numerous land cover datasets can act as references for understanding land cover change in China, the inconsistencies between the datasets can also provide understanding. Previous studies on the consistency between land cover datasets have mostly focused on land cover type consistencies and have ignored data consistencies in land cover change. Outcomes Therefore, we aim to analyse the consistencies in land cover changes through likelihood assessment methods. We compared the spatiotemporal changes in forest, grassland, cropland, and bare land in the Climate Change Initiative land cover dataset (CCI-LC), Moderate-resolution Resolution Imaging Spectroradiometer land cover dataset (MCD12Q1), China’s National Land Use and Cover Change (CNLUCC), Globeland30 and Global Land Cover Fine Surface Covering 30 (GLC-FCS30) datasets in 2010. The results showed that the percentages and changes in each land cover type in MCD12Q1 were different from those in the other datasets. Discussion For example, the proportion of grassland in MCD12Q1 was the highest, reaching 48.04%. The places with high consistency were the places where the land cover types were concentrated, and the bare land had the highest consistency. However, the consistency of China’s land cover change was quite low, and the percentage of low consistency was more than 87% from 2000-2018. Comparison of the data with the global artificial impervious area (GAIA) and Hansen-Global Forest Change (Hansen-GFC) datasets showed that the percentage of high construction gain consistency (38.83%) was higher than the forest change consistency, and the percentage forest loss high consistency (8.85%) was lower than the forest gain high consistency (12.76%). Conclusion The results not only provide a basis for the use of land cover datasets but also give a clearer understanding of the pattern of land cover changes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.