Abstract

ABSTRACTThrough high-resolution direct numerical simulations, the present study aims to investigate several laminar-to-turbulent transition scenarios in the presence of wall heat transfer for supersonic boundary layers over strongly heated/cooled and adiabatic flat plates. The laminar boundary layer is tripped using a suction and blowing technique with a single-frequency, multiple-spanwise wavenumber excitation. The results are evaluated and compared with linear stability theory to isolate the effect of wall heat transfer, as well as forcing parameters, on the transition. It was found that increasing the disturbance amplitude as well as perturbation frequency moves the transition upstream. Also, the effect of wall heating was seen to stabilize the flow and to postpone the transition, contrary to the wall cooling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call