Abstract
An analytical study of the effects of noncondensable gas on laminar film condensation of vapor under going forced flow along a vertical surface is presented. Due to the markedly nonsimilar character of the coupled two-phase-flow problem, the set of parabolic equations governing conservation of momentum, species, and energy in the vapor phase was solved by means of finite-difference methods using a forward marching technique. Interfacial boundary conditions for the numerical solution were extracted from a locally valid Nusselt-type analysis of the liquid-film behavior. Locally variable properties in the liquid were treated by means of the reference-temperature concept, while those in the vapor were treated exactly. Closure of the numerical solution at each step was effected by satisfying overall mass and energy balances on the liquid film. A general computer program for solving the problem has been developed and is applied here to condensation from water-vapor–air mixtures. Heat-transfer results, in the form q/qNu versus x, are reported for vapor velocities in the range 0.1 to 10.0 fps with the mass fraction of air ranging from 0.001 to 0.1. The temperature in the free stream is in the range 100–212 deg F, with overall temperature differences ranging from 5 to 40 deg F. The influence of noncondensable gas is most marked for low vapor velocities and large gas concentrations. The nonsimilar character of the problem is especially evident near x = 0, where the connective behavior of the vapor boundary layer is highly position-dependent.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.