Abstract

Laminar film condensation in upward and downward vapor flows is numerically investigated by using a sharp-interface level-set method to track the condensate film surface and accurately calculating the phase-change mass flux under the saturation temperature condition at the interface. An analytical model for steady laminar film condensation in upward as well as downward vapor flows is developed to validate the present numerical results. As the vapor velocity increases, the condensation rate is observed to decrease in upward vapor flows whereas it increases in downward vapor flows. The effects of vapor velocity and wall temperature on laminar film condensation in upward and downward vapor flows are investigated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.